Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes.

[Total No. of Questions: 09]

Uni. Roll No.

Program/ Course: B.Tech. Semester: 5th / (2018) Name of Subject: Theory of Computation Subject Code: PCIT-112 Paper ID: 16443

[Total No. of Pages: 2]

15-01-2022(E)

Time Allowed: 02 Hours

Max. Marks: 60

NOTE:

- 1) Each question is of 10 marks.
- 2) Attempt any six questions out of nine
- 3) Any missing data may be assumed appropriately
- Q1. a) State Pumping Lemma for Regular language. Show that the set $L = \{ a^i b^i | i \ge 1 \}$ is not regular.
 - b) State Pumping Lemma for Context Free Grammar. Show that the set $L = \{ a^{p} | p \text{ is prime } \}$ is not CFL.
- Q2. a) Convert the following Grammar into Greibach Normal Form (GNF): S->XA | BB, B-> SB | b, X->b , A \rightarrow a
 - b) Give the examples/applications designed as finite state system.
- Q3. a) Construct a PDA that accepts $L = \{ ww^R | w = (a+b)^* \}$. What are the applications of automata theory?

b) State the equivalence of PDA and CFL.

Q4. a) Differentiate L* and L+

b) How many strings of length less than 4 contains the language described by the regular expression (x+y)*y(a+ab)*?

- Q5. a) How to convert finite automata to regular expression by using Arden's theorem.
- b) Suppose that language A_1 has a context-free grammar $G_1 = (V_1, \Sigma, R_1, S_1)$, and language A_2 has a context-free grammar $G_2 = (V_2, \Sigma, R_2, S_2)$, where, for $i = 1, 2, V_i$ is the set of variables, R_i is the set of rules, and S_i is the start variable for CFG G_i . The CFGs have the same set of terminals Σ . Assume that $V_1 \cap V_2 = \emptyset$. Define another CFG $G_3 = (V_3, \Sigma, R_3, S_3)$ with $V_3 = V_1 \cup V_2 \cup \{S_3\}$, where $S_3 \in V_1 \cup V_2$, and $R_3 = R_1 \cup R_s \cup \{S_3 \rightarrow S_1, S_3 \rightarrow S_2\}$. Argue that G_3 generates the language $A_1 \cup A_2$. Thus, conclude that the class of context-free languages is closed under union.
- Q6. Construct a Turing machine for $L = \{a^i b^j c^k | i^* j = k; i, j, k \ge 1\}$. Discuss the Halting Problem in Theory of Computation.

Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes.

- Q7. List the Conversion from Mealy to Moore Machine. What is E-closure of a state q0?
- Q8. a) Write a regular expression to denote a language L which accepts all the strings which begin or end with either 00 or 11.

b) Construct Pushdown automata for L = $\{0^n 1^m 2^m 3^n | m, n \ge 0\}$

Q9. a) Construct a regular expression for the language which accepts all strings with atleast two c's over the set $\Sigma = \{c, b\}$

b) What is the minimum number of states in deterministic finite automata (DFA) for string starting with ba² and ending with 'a' over alphabet {a, b}?
