Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes.

[Total No. of Questions: 9]

[Total No. of Pages: 2]

Uni. Roll No.

Program/ Course: B. Tech.

Semester: 4

Name of Subject: Mathematics-II1

Subject Code: BSME-101

Paper ID: 16197

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Part - A & B are compulsory

2) Part- C has two Questions Q8 & Q9 and both are compulsory, but with internal choice.

3) Any missing data may be assumed appropriately.

Part - A

[Marks: 02 each]

Q1.

a) Write one dimensional wave equation.

b) Write Cauchy - Riemann equations in polar co-ordinates for analytic function f(z) = u + i v

c) Classify the following partial differential equation:

$$x^2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u = 0$$

d) A normal population has a mean of 6.8 and standard deviation of 1.5. A sample of 400 members gave a mean 6.75. Is the difference significant? $z_{\alpha} = 1.96$ at 5% level of significance.

e) Evaluate $\oint_C \frac{3z^2+z}{z^2-1}$, where c is the circle $|z| = \frac{1}{2}$.

f) Find the mean of the Binomial Distribution.

Part - B

[Marks: 04 each]

Q2. Solve the following partial differential equation:

$$\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + xy + y^2$$

Q3. Sove the following partial differential equation:

$$(y - z)\frac{\partial z}{\partial x} + (x - y)\frac{\partial z}{\partial y} = z - x$$

Q4. Assume that on the average one telephone number out of fifteen called between 2 P.M and 3 P.M on week-days is busy. What is the probability that if 6 randomly selected telephone numbers are called (i) not more than three, (ii) at least three of them will be busy.

P.T.O

- Q5. If f(z) = u + iv is an analytic function, then prove that u and v are both harmonic functions.
- Q6. Expand the function $\frac{1}{(z+1)(z+3)}$ in the region 1 < |z| < 3.
- Q7. Find the correlation coefficient between x and y, when the lines of regression are : 2x 9y + 6 = 0, x 2y + 1 = 0

Part - C

Q8 A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error. If the temperature along one short edge y = 0 is given by $u(x, 0) = 100 \sin \frac{\pi x}{8}$, 0 < x < 8, while the two long edges x = 0 and x = 8 as well as the other short edge are kept at $0^{\circ}C$, show that the steady state temperature at any point of the plate is given by

[Marks: 12 each]

OR

If the probability that an individual suffers a bad reaction from a certain injection is 0.001. Find the probability that out of 2000 individuals

- (i) Exactly 3 individuals will suffer a bad reaction
- (ii) None will suffer a bad reaction

 $u(x,y) = 100 e^{-\frac{\pi x}{8}} \sin \frac{\pi x}{9}.$

- (iii) More than one individual will suffer
- (iv) More than two individuals will suffer.
- Q9. Evaluate $\int_0^{\pi} \frac{d\theta}{a + b \cos \theta}$, where a > |b|, using Residue theorem. Hence evaluate $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} \cos \theta}$.

OR

A die is thrown 276 times and the result of these thrown are given below:

No.	1	2	3	4	5	6
appeared on die			g 4	V3. 3	2 _% =	2 6 46
Frequency	40	32	29	59	57	59

Test whether the die is biased or not. Tabulated value of chi square at 5% level of significance for 5d.f is 11.09.
