Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

[Total No. of Questions: 09]

[Total No. of Pages: 02]

Uni. Roll No.

B.Tech. (2018 Batch onwards)
Semester: 4th

DIGITAL ELECTRONICS

Subject Code: PCEE-105
Paper ID: 16186

Time Allowed: 03 Hours

Max. Marks: 60

Note:

1) Part A and B are compulsory

- 2) Part-C has two questions Q8 & Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately.
- 4) Here 'sign means complement.

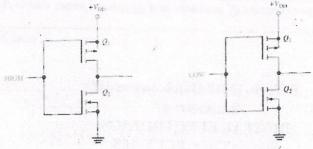
Part - A

[Marks: 02 each]

Q1.

- a) Do the following conversions:
 - i) (1101101.1011) to ()₁₀
 - ii) (10110010) to ()2's complement
- b) Draw an EX-NOR gate. Write its Boolean expression and truth table.
- c) Which Flip-Flop is normally not used in practical applications? Give reason for that.
- d) State any two differences between RAM and ROM.
- e) A 4 bit flash ADC is used for converting analog signal to digital signal. Calculate the number of comparators to be used in the circuit.
- f) What is the range of voltage for CMOS for LOW and HIGH logic for +5V system?

Part - B


[Marks: 04 each]

- Q2. State and prove De-Morgans theorem with the help of truth table and logic diagrams.
- 03. Implement NOT, AND, OR and NAND gates using NOR gate(s) only.
- Q4. Explain with logic circuit diagram and truth table the working of clock triggered JK Flip-Flop.
- Q5. Design a Decimal to BCD Encoder.
- Q6. Show how a PAL is programmed for a following 3-variable logic function X=A'B'C+A'BC'+AC+AB'
- Q7. What does the following circuit represent? Explain the operation of this circuit. What

will be the conditions of Q1 and Q2 in both cases? Fig1(LHS).

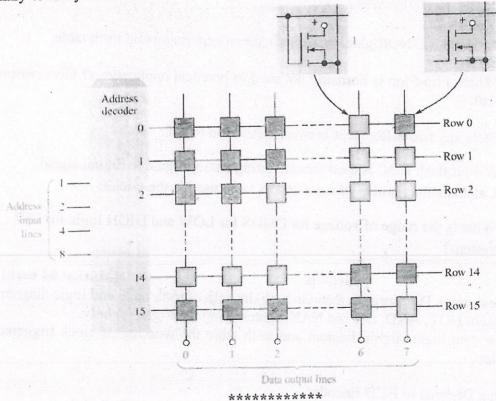
EVENING

1 2 MAR 2021

Part - C

[Marks: 12 each]

Q8. Use a Karnaugh map to minimize the following SOP expression: X = B'C'D' + ABC'D' + A'BC'D' + A'BC'D' + A'B'CD + A'BCD' + A'B'CD' + A'B'CD'


Implement the simplified expression using logic gates

Explain with block diagram the working of Dual Slope Analog-to-Digital converter.

Q9. Design a 3-bit Gray code synchronous counter and implement the counter using JK Flip-Flops.

Show a basic ROM similar to one shown in figure below programmed for a 4-bit

binary-to-Gray conversion.

