Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes.

[Total No. of Questions: 09]

[Total No. of Pages: 02]

Uni. Roll No.

Program: B.Tech. - ECE

Semester: 4

Name of Subject: Linear Control Systems

Subject Code: PCEC-109

Paper ID: 16225

Scientific calculator is Allowed

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

- 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

01.

- illustrate the applications of servo motors. - a)
 - Find the Laplace transform of unit ramp and unit impulse signal. b)
- Identify the advantages and disadvantages of adding phase lag-lead c) compensator.
- If closed loop poles are present on many points of imaginary axis, how does it influence stability?
- Compare open and closed loop systems. e)
- Examine the significance of poles and zeros in control system. f)

Part - B

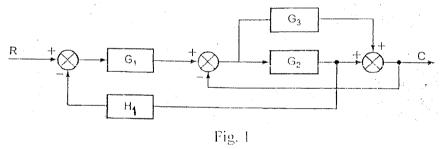
[Marks: 04 each]

- Explain the construction, principle and working of potentiometer. How is it used as Q2. error detector?
- What are the necessities of compensation networks? Q3.
- Explain how a temperature control system works and obtain its mathematical Q4. equations.
- Distinguish between time variant and time invariant systems. Q5.

Page 1 of 2

- Q6. Develop an expression for unit step response for a second order system.
- Q7. Determine the time response of a first order control system subjected to unit ramp input signal.

[Marks: 12 each]


Q8. Identify the different components of a control system. Explain with diagrams different types of control systems.

OR

Construct the root locus plot for the system having open-loop transfer function is given by

$$G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+13)}$$

Q9. Determine the transfer function relating C and R for the block diagram given in Fig. 1. Use Mason's gain formula.

OR

Sketch the asymptotic Bode plot for the transfer function given below:

$$G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

From the Bode plot, determine the following:

- a. phase crossover frequency
- b. gain crossover frequency
- c. gain margin
- d. phase margin
- e. stability
