Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

Subject Code: PCEE-101

Paper ID: 16064

[Total No. of Questions: 09] [Total No. of Pages:] Uni. Roll No. Program: B.Tech. Semester: Third Name of Subject: Electrical Circuit Analysis

Max. Marks: 60

Time Allowed: 02 Hours

NOTE:

- **1**) Each question is of 10 marks.
- 2) Attempt any six questions out of nine
- 3) Any missing data may be assumed appropriately

Q1. For the circuit shown below determine the load current I_L using Norton's Theorem.

Q2. Determine the currents in each branch in the network shown below using nodal analysis.

- Q3. Derive step current response for RL parallel circuit using Laplace transformation technique.
- Q4. A series RC circuit has $R=15 \Omega$ and $C=100\mu$ F. It is connected in parallel to an inductor of 500mH and the combination is connected across a 100V, 50Hz source. Find the current in resistance and inductor. Draw the vector diagram showing the total current.
- Q5. Analyse sinusoidal response of series RLC circuit.
- Q6. Find current after switch is closed at time t=0. Assume initial charge on capacitor as 100μ C, R= 10hm

Q7. a) Determine Laplace of $\cos^2\theta$.

b) State and prove Maximum Power Transfer Theorem. (5+5)

Q8. Give steps to obtain Cauer Form I for any given driving point impedance function in LC network. Synthesize

$$Z(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}$$
 in Cauer I Form.

Q9. Obtain the expression for Z parameters in terms of Y parameters. Also find z parameters for the given network

1	→ I1	-⁄//- 1Ω		 2 Ω	← <i>l</i> ₂	†
V ₁					ξ4 Ω	V_2
ţ			3			ţ
